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SUMMARY 
Two-dimensional initial-boundary value problems are considered for the shallow water equations and the 
equation of advection and dispersion of pollutants. The problems are solved in curvilinear boundary fitted 
co-ordinates. The transformed equations are integrated on a regular grid by the semi-implicit and implicit 
finite difference methods. Based on the numerical method, the integrated modelling system Cardinal for 
coastal area dynamics and pollution processes is developed for application on personal computers. 
Examples of computations are given. 

KEY WORDS Boundary-fitted co-ordinates Semi-implicit and implicit finite difference methods Coastal area water 
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1. INTRODUCTION 

To describe storm surges, tsunamis, typhoons, tides, seiches, bores, wind-driven circulations, 
river flows and other natural phenomena, the shallow water equations are used. The classical 
theory of the shallow water equations is an approximate theory which follows from the 
assumption that the horizontal scale of the motion, e.g. the wavelength, is much larger than the 
vertical scale, e.g. the depth of fluid.' The shallow water equations are often used with lateral 
turbulent eddy diffusion terms. The equations thus obtained are of the incompletely parabolic 
type.2 The formulation of boundary value problems for these equations differs from that for the 
shallow water equations of the quasi-hyperbolic type. 

One of the major difficulties in solving all the above-mentioned problems is the complex 
configuration of the integration domain, which corresponds to the real shoreline contour. The 
widely used approach to numerical modelling of fluid motions is to approximate the boundary 
of the domain by a series of line segments parallel to the Cartesian co-ordinate axes. A drawback 
of this approach is that the solution is distorted in the boundary zone, i.e. where, as implied, 
the most stringent requirements are imposed on the accuracy of the r e s o l ~ t i o n . ~ . ~  Using a 
piecewise linear approximation of the boundary in the case where it alternates at each grid step, 
the boundary condition of zero velocity normal to the boundary is interpreted as a condition 
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of zero velocity vector. This leads to an essential error at the points nearest the boundary. 
Another defect of such an approximation is that it cannot be improved: the perimeter of the 
computational domain is not varied as the grid is refined, while the relative defect of the metrics 
can be considerable depending on the coast geometry. 

One of the widely used methods for solving boundary value problems in complicated domains 
is the finite element method.’ Another approach, the one used here, consists of mapping a given 
domain on to a canonical one and integrating the modified equations in it by a finite difference 
method. The accuracy of solutions obtained with these methods is improved. A good illustration 
of this is given in Reference 6, where a comparison of lines of equal water elevation at the 
boundary shows that a transition to curvilinear co-ordinates is useful: the errors arising from 
the stepwise approximation are not removed with the refinement of a rectangular grid. Mapping 
of a curvilinear grid on to a rectangular one can be implemented in many ways, e.g. by solving 
the boundary value problem for a set of elliptical equations,’ as is done in this paper. The given 
equations transformed to curvilinear co-ordinates are then integratred in a canonical domain 
with simple boundary conditions. 

The curvilinear grid approach developed in computational aerodynamics is now used for 
solving oceanological and hydrological boundary value problems in multiply connected domains 
of complex shape. In References 8-13 the shallow water equations are modified to curvilinear 
co-ordinates, but as unknowns the Cartesian components of velocity remain unchanged. 

The present model represents modificiations of the shallow water equations in terms of the 
contravariant components of flux.I4 It makes the equations simpler and especially simplifies the 
boundary conditions. Such equations were also used by Sheng,” but his form of the advection 
terms differs from that derived in Reference 14. In his paper the form of the lateral turbulent 
diffusion terms and the method of solution are not shown. 

The modified criterion of stability for explicit shemes in curvilinear co-ordinates depends not 
only on the fluid depth but also on the metric of transformation. In zones of small-scale geometry 
and fast flows, defined by the presence of hydrotechnical structures and the morphometry, the 
time step of numerical integration for explicit schemes can be rather small, of the order of a few 
seconds. This makes it more reasonable to prefer implicit or semi-implicit methods of integration 
of the equations in curvilinear co-ordinates. The equations in terms of the contravariant flow 
components are easy to implement by the semi-implicit method discussed for Cartesian 
co-ordinates in References 1 6 1 8 .  In the semi-implicit method the level gradients are approx- 
imated implicitly and the advection is approximated explicitly. The method does not require 
matrix inversion for each time step. It is realized by a direct tridiagonal solver for one of the 
dependent variables on each time half-step and by determination of the other two variables from 
explicit formulae. With advection neglected, this method is unconditionally stable. In the general 
case it often allows computation with a Courant-Friedrich-Lewy (CFL) stability criterion large 
enough such that limitations on the value of the time step are determined only by the 
requirements of accuracy. To improve the stability of the semi-implicit method, the Euler- 
Lagrange representation of advection’’ or iterations” may be used. 

The study of contaminant propagation in the coastal zone is an important problem associated 
primarily with environmental problems. It is needed to develop pollution transport computa- 
tional methods, which make it possible to analyse the field of evolution with waste parameter 
variation under varied hydrometeorological conditions, in order to evaluate different courses of 
action. For modelling the transport of pollutants with curvilinear co-ordinates it is also 
reasonable to use implicit finite differences. Of primary importance here is the appropriate 
approximation of the advection terms for which schemes of high resolution are very useful.” 
For explicit schemes this was shown by Munz21 
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Considerable experience is being obtained at present in numerical computations of the 
dynamics and transport of pollutants with curvilinear co-ordinates. At the same time we consider 
that a discussion centred on the features of computer modelling systems is an important theme. 

In the next section we present the derivation of the shallow water equations with viscosity for 
the contravariant components of flux. The main difficulty here, as well as with Cartesian 
co-ordinates, lies in the formulation of the open boundary problem. It should be noted that 
usually it is impossible to impose correct boundary conditions. However, we include a formula- 
tion of correct boundary conditions for the hyperbolic and viscous shallow water equations in 
contravariant co-ordinates. The semi-implicit method for these equations is presented in Section 
3. The derivation of the advection-diffusion equation for contravariant flux components is given 
in Section 4. Section 5 deals with the implicit scheme for the advection-diffusion equation. In 
the last section examples applications of the model are given. In the Appendix we give a 
functional description and the basic characteristics of the interactive modelling system Cardinal 
for solving problems of the dynamics and contamination of an arbitrary water area under a 
wide range of conditions. 

2.  VERTICALLY AVERAGED EQUATIONS IN CURVILINEAR CO-ORDINATES 

Equations for the contravariant components of flux-. 

water equations: 
In the domain Q2 = (x, y E R, t 2 0) let us consider the following form of the viscous shallow 

i, + ux + y, = ws,  (3) 

where U = s'h u dz, V = j'h u dz, u and u are the Cartesian components of the velocity vector, 
i is the surface elevation, H = h + [, h = h(x, y )  is the undisturbed depth, f is the Coriolis 
parameter, k ,  is the wind friction coefficient, w ( ~ )  and w(,) are the Cartesian components of 
the wind velocity vector w, p is the bottom friction coefficient, V is the flux vector, pa is the 
atmospheric pressure, g is the gravitational acceleration, p, is the lateral turbulent eddy coefficient 
and w, is the internal water source discharge per unit area. 

As shown by Gustafsson and Sundstrom,2 correct boundary conditions for equations ( 1 H 3 )  
may have the form (e.g. for x = const. boundary) 

U = 0 and 8V + (1 - 8)p1 V,/J(gh) = ifl,  0 I 8 I 1 ,  on the solid boundary, (4) 

U + J(gh) [  = y 2 ,  V = y 3  and p I  CJ, = y4 on the inflow boundary, ( 5 )  

U - J(gh) [  + p l  U,/J(gh) = y5  and pI V, = y6 on the outflow boundary, (6)  

where yi(t) are arbitrary functions. These conditions remain valid for the hyperbolic shallow 
water equations, i.e. for the case p, + 0.22 

Let us introduce curvilinear co-ordinates r(x, y) and q(x, y) concordant with the configuration 
of the given domain Q(x, y): on a chosen segment of 8R one of the co-ordinates is fixed and the 
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other is disturbed arbitrarily but monotonically. In the (t,q)-plane the domain R will be 
represented by the rectangle RT. Consider the transformation 

s' = t(x, Y)1 rt = rt(x9 Y).  r = t  (7) 

with the Jacobian J = x ,y ,  - x,ygr 0 # J < 00. In the new variables equations (1) and (2) 
transform 

(U21H),Y,  - ( U 2 / H ) , Y ,  + ( W H ) , X g  - ( W H ) , x ,  _____.. 9H(C,Y, - 5,Yc) 
r J 

U + + -  
J 

Multiplying equation (8) by J-'y,, equation (9) by - J - ' x ,  and summing them, we obtain 
equation (10) in which the main terms are expressed via the contravariant fluxes. Similarly, 
multiplying equation (8) by - J - ' y , ,  equation (9)  by J - ' x g  and summing them, we get equation 
(1 1). Equations (1H3) assume the form 

it + J - ' ( P g  + Q,) = w,,  (12) 

where P = U y ,  - V x ,  and Q = V x ,  - Uy, are the contravariant components of flux, d = 
( P U H - ' ) ,  + ( Q U H - I ) , ,  5? = ( Q W - ' ) q  + (PW-'),, g l l  = x i  + y i ,  g22 = x,' + y ;  and g12  = 
xCx, + y,y,_are the covariant components of the metric tensor, P y ,  = J - ' ( g , , P  + g 1 2 Q )  = U s :  
+ V,, and Q = J - ' ( g , , Q  + g12P) = V y ,  + U x ,  are the covariant components of flux and IVI = 
( U 2  + V2)'I2 = [ ( P P  + Q@/ . I ]1 '2 .  The Cartesian components of flux U and I/ can be expressed 
via the contravariant fluxes P and Q as 

U = ( P x ;  + Qx, ) /J ,  V = (QY,  + PY, ) /J .  (13) 

Laplacians in curvilinear co-ordinates may be expressed as 

v24 = J - 2 ( 9 2 2 4 < 5  + Y l 1 4 q g  - 29124<,) + ( t * x  + t,,)4, + (rtxx + rtyy)4,. (14) 

If the curvilinear grid is generated with the elliptical m e t h ~ d , ~  then the last two terms in equation 
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(14) are equal to zero and the expressions for the lateral eddy viscosity terms in (10) and (11) 
may be simplified to 

PI PI 
PI(V2UY, - v 2 b J  = J z  ( S z t P , ,  + g l l p , , ) ~  M V 2  Vx/xs - V2 UY,) z J Z  (9 1 Q,, + 9 2 2  Qs& 

Finally the system ( 1 0 H 1 2 )  can be written in a matrix form as 

W,+AW,+BW,=Y, < , v € Q T ,  t l O ,  (15) 

where 

0 0 - g H J - ' g 1 2  
0 0 g H J - ' g , ,  

J - '  0 0 

0 J - '  0 

Boundary problem formulation 

Let us consider the formulation of boundary conditions in curvilinear co-ordinates (e.g. for 
5 = const. boundary) for the hyperbolic case pI + 0. The system (8), (9), ( 1 2 )  can be written in 
the form 

where 

P I J H  0 gt, 0 

H 5 ,  H 5 ,  P I J H  H v x  H v y  QIJH 
U =  (;!), A =  ( 0 P / J H  g t , , ) ,  B =  rH 

To diagonalize the matrix A, we introduce the matrix S-  whose strings are eivenvectors of A :  
-b a 

0 
0 

aiJ2 blJ2 J W H )  

0 

After the transformation A = S - ' h  the matrix A converts to diagonal form: 

P J -  l H -  l 
A = (  0 ( P H - '  + s , )J - '  

0 0 (PH-' - s,)J-' 

where sp = J ( g H  g12) .  
Multiplying equation ( 1 6 )  by S - ' ,  we obtain 

O, + Aw, = F, w = s - ' u  = (wo, w + ,  w - ) ,  
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where the right-hand side F does not influence the behaviour of the characteristic matrix on 
an:. Thus the transfer to curvilear co-ordinates changes the tangential velocity component of the 
covariant one and the normal velocity component of the contravariant one. 

For 0 < P < s,H the matrix A on ail; has two positive eigenvalues, i.e. two boundary 
conditions should be implied for the inflow. For P < 0 the matrix A has only one positive 
eigenvalue, so one boundary condition should be implied for the outflow. In accordance with 
( 5 )  and (6), the boundary conditions for the hyperbolic case (p, = 0) have the form 

P + spc = y l ,  and = y2  on the inflow 5 = const. boundary, 
Q + s q i  = y 3 ,  and P = y4 on the inflow q = const. boundary, 

P - spc = y s  on the outflow q = const. boundary, 
Q - ssc = y6  on the outflow q = const. boundary, 

(17) 

(18) 

where s, = J ( g h g l  l). The homogeneous forms of (18) is often used as the condition which allows 
a wave to leave an area of computation ('free exit' condition). In Cartesian co-ordinates it has 
the form of a relation between the normal component of velocity and surface elevation: 

u n  = * J ( g / h K .  

In curvilinear co-ordinates for the lines r = const. we have 

P = +spT (19) 

Q = f s q 5 .  (20) 

and for the lines = const. 

On the solid parts of the boundary an,* the condition u, = 0 transfers to u, = v - Vt' = 0, i = 1,2,  
i.e. 

P = 0 on 5 = const., 

Q = 0 on q = const. 

In accordance with (4)-(6), conditions (17), (18) and (21) on the 5 = const. boundary for the 
viscous shallow water equations should be augmented with the terms p,d(g;;I2P)Sn and 
p,a(g; l"2Q)dn.  Here S / d n  is the operator of the normal derivative to the line < = const.: 

d 1 s 

Condition (21) with J > 0 leads to the no-slip condition on the solid boundary U = V = 0. 

E n e r g y  equat ion 

In the set of equations (1)-(3) we multiply the equation of motion by V and the equation of 
continuity by IVI2,2H2) + 95. After summing them and integrating over the domain R, we have 
the equation for the total energy E: 

+ 291)V. ds = [ k,J w I w - (x> - p( :y + p,V . V2( i)] dx dy, 
aE 1 u2 + v2 
% + 2 b , (  H 2  

u2 + vz 
E = 1 2 jjn ( + g5') dx dy. 
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This equation shows that a change in energy is determined by the fluxes across open 
boundaries, the work of wind stresses, energy dissipation due to bottom friction and turbulent 
diffusion. To obtain the energy equation in curvilinear co-ordinates, we multiply the first 
equation of the set (15) by P, the second by 0 and the third by g{ + (VI2/2H2. Adding the 
results, integrating over the domain 0, and using the Green formula, we have 

where P, = P for the lines [ = const. and P, = Q for the lines q = const. 

3. SEMI-IMPLICIT SCHEME FOR THE VISCOUS SHALLOW WATER EQUATIONS 

Let us simplify the algorithm approximating the advection terms explicitly, though level gradient 
approximating implicitly. We will approximate implicitly also the bottom friction terms and 
explicitly the Coriolis terms and lateral eddy viscosity terms. 

Factorizing the equation set (15), we obtain 

( E  + 7 At Adi)( E + At Bd,,>,+ = ( E  - Adt ) (  E - $ Bd,)Wn + A t Y ,  (24) 

where E is the unity matrix, n is the time step number and At is the time step. Approximating 
the differential operators by the central second-order differences a, - 6, and a, - 6,, we get the 
Crank-Nicholson scheme which can be realized by the splitting 

Let us check the approximation of the non-uniform factorized equation (24) by the scheme 
(25). Excluding W* from (25), we obtain 

W"+' - W" 

At 
+ *A6,(Wn+' + Wn) + +BS,(Wn" + W") = #'" + Y * )  + R, (26) 

where R is the approximation error given by 

At At2 
4 8 

R = - - ASABS,W,) + - A6,Yr = O(At2). 

Analysis of the stability of the scheme (25) for the linear case with advection neglected gives 
for the eigenvalues Ai of the matrix %Ad, + B6,) 

K 
A l  =o,  A 2 , 3  = + i  - J - l a ,  

2 

where K = At/A, a = (g,1sin282 + g22sin281 - 2 g , , ~ i n e ~ s i n e ~ ) ~ ~ ~  2 0,8, = s lA ,  0, = s2A, s1 and 
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s, are the grid wave numbers and A = A t  = Aq is the space step. The eigenvalues g i  of the 
transition matrix e of the scheme (26) are g i  = (1 - Ai)/( l  + Ai), g 1  = 1, lg2,31 = 1, i.e. the scheme 
is absolutely stable. For the general case consideration of the eigenvalues of the matrices A and 
B gives the following limitations on the fluxes and time step: 

1 
H ~ (f', Q )  J C S H ) ( J S ~ ~ ,  Jgii), (27) 

To estimate the phase error of the Crank-Nicholson approximation in curvilinear co- 
ordinates, let us consider two-dimensional advection with velocity (u,, 0,). In this case A = u,E 
and B = u,E in (26) and we have 

where 

K x = - ( U ,  sin 8, + V, sin 02), U ,  = J-l(u,y,, - u,x,,), V, = r l ( - u , y g  + U , X J .  2 

The phase shift has the form 

ti( U ,  sin 8, + V, sin 8,) 
1 - (ti2/4)(U, sin d 1  + V, sin 8 2 ) 2  

--). - t+b = arg(G) = - tan- '  

For fixed CFL numbers KU, and KV, the phase error increases with increasing 8. The dispersion 
error 1 - $/$, (where t+bo is the harmonic solution) decreases rapidly with decreasing 8, so the 
type of dispersion is normal. 

Numerical realization 

The structure of the matrix A permits one to exclude [* from the first and third equations 
for W* and to obtain an equation for P* which can be solved by a tridiagonal solver. The 
unknowns [* and Q* can then be determined explicitly. Similarly, excluding ["+I  from the first 
and third equations for W"", we arrive at a boundary value problem with respect to Qntl 
which can be solved also by a tridiagonal solver and then jn'l and Pn+' are found explicitly. 

For the first-half step we have 
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Differentiating (33) with respect to 4. and substituting the obtained expression in (31), we exclude 
the unknown [*: 

At2 
-P* + - gHg2,6,(J-16,P*) - p 45 

The non-linear bottom friction term is linearized and approximated implicitly. Equation (34) 
with two conditions for P* on opposite boundaries can be solved by a tridiagonal solver. Then 
we can find the unknowns i* and Q* explicitly from (32) and (33). The second half-step is similar. 

It is convenient to use the space-staggered C grid of Mesinger and A r a k a ~ a ~ ~  with points 
t iqj  E R,, i = 1,2, . . . , I, j = 1,2, . . . , m, in which [-values are defined at even grid points, P-values 
are defined for even-i and odd-j points and Q values for odd-i and even-j points. The depth 
values h may be specified at odd points. 

On the solid parts of the boundary the condition of zero normal flux in the contravariant 
variables is very simple (21): 

P = 0 on 5 = const., 

Q = 0 on q = const. 

On the open parts of the boundary it is very simple to assign discharges, which is often done 
in practical applications because they are P and Q themselves. 

If the surface elevation is specified on the boundary, then from equation (33) we get the 
following boundary condition for equation (34): 

d,P* = - J([* - r)/(At/2) - 6,Q". (35) 

With accuracy (O(At2) we may obtain c* = [(t" + At/2). 
The third type of open boundary is the 'free exit' one through which disturbances may leave 

an area of computation, equations (19) and (20). To obtain the 'free exit' boundary condition for 
equation (34), we exclude [* from (34) and (19) and for the 5 = const. boundary we then have 

For the q = const. boundary this condition has the form 

1 T c;* 1 f S(p:+ 1 - Pf- l)j* 1 

sq- + s Q;:; + n + l  - 
Qi - 1 + (sqs)-l  

(37) 

where s = At(2J)-'. 
To approximate the derivative 6,r in equation (34) near the q = const. boundary at P-points, 

we must use one-sided differences including four nearby [-points instead of central ones. The 
same procedure is adopted when solving equation (32). The stability of this procedure for the 
Crank-Nicholson scheme was shown by Abarbanel and M ~ r m a n ~ ~  based on the approach 
developed by Gustaffson et aL2' 

The approximation of lateral eddy diffusion terms near solid boundaries requires the 
assignment of values of a flux P - l ,  Q- at points which lie outside the grid. The assignment of 
zero values may lead to a significant error in velocity cross-section profiles, because the grid 



190 K. A. KLEVANNY, G. V. MATVEYEV AND N. E. VOLTZINGER 

refinement is usually not perfect. We adopt a quadratic friction law condition analogous to the 
bottom friction one: 

au u l v  av VlVl 
pl - = I ,  - (( = const.), an  d n  H 

p1 ~ = I ,  H -  (q = const.), (38) 

where I ,  is an empirical wall friction coefficient. Turning to curvilinear co-ordinates, we can 
obtain after linearization and some simplifications 

Test ing  

Figure 1 shows an example of the computation of free oscillations in a circle mapped on to 
a rectangle using this algorithm with zero advection and friction. In a zone of the refined 
computational grid the CFL number reaches a value O(102). The first mode of oscillations at 
the circle centre is compared with the analytical solution26 ( ( r ,  t) = ( ,J , (kr)  cos(wt), where J ,  is 
a zero-order Bessel function, k = 1.21979n/R, w = k J ( g h )  and R is the radius of the basin. The 
wave height practically coincides with the analytical solution, while the wave frequency is 
somewhat slower than the analytical one. Upon decreasing the time step, the phase velocity 
error becomes smaller. 

Another test was the computation of a large vortex in a channel with a sudden expansion of 
its width. the result was compared with hydraulic model data obtained by G. V. Stefanofich 
at the B. E. Vedeneev Hydrotechnical Institute in St. Petersburg especially for the testing of 
numerical models. The water depth was 10 cm, the discharge 0.052 m3 s - '  and the Mannings 
number n = 0.0136. The computational grid consisted of 51 x 53 points and At was taken equal 
to 0.01 s. The vortex is a result of non-linear advection and lateral eddy viscosity. The current 
in the hydraulic model displayed a slightly oscillating behaviour and the average length of the 
vortex zone was approximately 5.3 m. In computations we found a vortex length equal to 4.6 m 
(Figure 2). The length increases with decreasing lateral eddy coefficient pI, but at smaller values 
of pl the velocity field starts to oscillate. We should note that in this experiment the transport 
of turbulent energy was significant and more precise results can only be obtained by taking this 
factor into consideration. For pl we used the expression pl = k L 2 ( u i  + u:)~'~, where k is an 
empirical coefficient and L is the local grid spacing. Turning to curvilinear co-ordinates and 
omitting the second-order terms, we have 

The best result for the length of the vortex zone was obtained with k = 0.015. However, for real 
size objects this value was found to be too small. The value of the wall friction coefficient I, 
according to this experiment and also to a comparison with field data for the Amur river (see 
Section 6) lies in the range 0.02-0.7. 
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Figure 1. Analytical testing of semi-implicit scheme. (a) Initial surface level for zero-order Bessel function in a circular 
cylindrical basin. Boundary walls are not shown. (b) Level oscillations in centre (1) and near a wall (2). Analytical period 

of oscillation is equal to 20 time steps 

4. ADVECTION-DIFFUSION EQUATION IN CURVILINEAR CO-ORDINATES 

In the domain Q 2  the depth-averaged contaminant cocentration tield evolution can be described 

(40) 

an equation which is obtained by vertical integration of the three-dimensional equation with 
the condition dc/dnl, = 0 and kinematic conditions on the free surface and at the bottom. Here 
c is the concentration of pollutant, pc is the diffusion coefficient, I is the coefficient of 

by 
(CH), + (UC), + (VC), = pcV2(cH) - AcH + oscs, 
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E 
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non-conservativity and c, is the source concentration. Note that in the derivation of this equation 
it is assumed, besides the assumption conforming to the shallow water theory, i.e. 

Z(X, V ,  Z, t )  dz C(X, y ,  Z, t )  dz, 1: h s : h  

?(x, y, z, t)ii(x, y ,  Z, t )  dz = H -  I Ih 
that the terms V(clc * Vc) and V(cl-,, * V h )  are small. I t  is valid for non-abrupt changes in depths 
and water surface. This equation is solved under a boundary condition of the type 

and some initial condition. 
One of the difficulties in solving the advection-diffusion equation is to approximate correctly 

the advection terms. The appropriate scheme should be accurate enough and possess acceptable 
dissipative and dispersive properties. Preferred schemes for describing the advection are based 
on approximations using directed or biased-directed finite differences that correspond to the 
hyperbolic character of the problem in the case where advection prevails. For such processes, 
when the Peclet grid number P = IvlA/pc % 1, the time step for explicit schemes is determined 
by the CFL criterion Ar - I v ) -  'A. In zones of small-scale geometry Ar can be rather small. Thus 
an implicit method of integration of the equation is preferable. The use of directed or 
biased-directed finite differences improves the dispersive properties of the scheme as compared 
with the central finite difference approximation of advection, controls the scheme's viscosity and 
facilitates the boundary condition formulation if the diffusion is negligible. One way to attain 
an accuracy higher than second-order is to use compact finite differences which conserve a 
three-point stenciLZ7 Below, a scheme of accuracy O(A3, At2) is implemented by a pentadiagonal 
solver along the co-ordinates. 

We make use of the transformation < = < ( x , y ) ,  r]  = r ] (x , y ) ,  which is consistent with the 
configuration Q(x,y) .  Using the contravariant fluxes P and Q, we can readily rewrite the 
advection terms in curvilinear co-ordinates using the mass conservation law as 

The exact expression for the diffusion terms is obtained after some transformations as 

pcV2(cH) = iic[(g22HJ-'c;)5 + (gl ,HJ-'c,) ,  - (g12HJ-'cv)C - (g12HJ-'c;),I. (43) 

Although this is a conservative form, it would be difficult to use this expression because i t  
contains derivatives of the Jacobian and of the metric coefficients. As mentioned above for the 
elliptical grid, a simpler formula may be obtained: 

Thus in curvilinear co-ordinates the advection-diffusion equation has the form 

J 

where w, = Jo, is the source discharge. 
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5. HYBRID SCHEME FOR ADVECTION-DIFFUSION EQUATION 

To solve equation (45), let us use the splitting 

We will approximate the advection terms by a hybrid of first- and third-order upwind finite 
differences as 

1 
~ , ( P c )  = [p;FR+ - jLf FLf + &FR - F ;  + (1 - j:)f; - (1 - jL+)fL+ 

+ (1 - PR)fR - ( 1  - PL)SL+I? (48) 

where F are the third-order, right (R) or left (L), positive (+) or negative (-) pollution fluxes 
and f are the corresponding first-order fluxes: 

1 (fci+ + dci - 6ci- l)Pi 
(%i - tci - l)P,', I 

(3ci + 2ci+ - & C ~ + ~ ) P R  
C i  + 1 Pi+ I 

on i # 1 - 1, 
o n i = l - 1 ,  

on i # 1 - 1, 
o n i = I -  1, 

(3ci+;ci-l -&i-2)P,+ o n i ~ 2 ,  
ci - 1 Pi+- 1 on i = 2, 

f L  = CiPL. 

i 
i '  

F; = 

FR = 

r '  (3ci - + ;ci - ici  + I)P, 
(7Ci - +ci + 1)P;- 1 

on i # 2, 
on i = 2, 

FL = FLf = 

f ;  = CiPL, f L +  = Ci-IPL+r 1;; = ci+ lPR3 

I' 
Here 

PL' =(pi-1/2 f IPi-l/2I)P. 
p' - 

R - (Pi+ 112 f IPi+ l /d) /Z 

Second-order extrapolation is used for F i  on i = 1 - 1 and for FL on i = 2 in order not to 
include in the advection term the boundary points i = 1 and i = 1 for outgoing fluxes (but these 
points still remain in the diffusion terms). 

A weighting function /3 may be chosen according to 

and so on. In regions of abrupt function variability fl tends to zero, so the first-order 
approximation will prevail and numerical dispersion will decrease. For regions of smooth 
concentration distribution /? tends to unity and the third-order approximation will prevent 
scheme diffusion. 

Substituting these expressions for F and f and the second-order approximation for the 
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diffusion terms, we obtain a hybrid approximation for the advection-diffusion equation. For 
the first half-step (46) we have 

(50) 

where A =  -ljLfPL+/6 on i Z 2  and A = O  on i = 2 ,  E =PRPR/6 on i # l -  1 and E = O  
on i = 1 - 1, B = p c H J - ' g 2 ,  - 6, D = p c H J - ' g Z Z  - d ,  C = J H ( - 2 / A t  + A) - 2 p , H J - ' g , ,  - E 
and 6 = d,(Qc)" - p E H J - 1 ( g 1 1 d r 1 4 c  - 4g1264" + 2 /At ( -JHnc"  - w,c,), with 

Ac:- 2 + Bc:- 1 + CC: + DC?+ 1 + EC:+ 2 = #', 

- /?;(+Pi  + : P i )  - (1 - &)P; 

-BR+(+Pi + +P:)  - (1 - $L+)PL+ 

/I,'($': + ~ P L )  + (1 - &)PR 

on 3 I i I 1 - 2,  

on i = I - 1, 
b =  -#R+Pi - P :  on i = 2, 

- i  P:(fP,' + $';) + (1 - $ ; ) P i  on i = 2, 

(1 - ip;)(P: - P L )  + 3(p,P, - p ; P ; )  
C =  (1 -$&)Pi + & P i  +(-fa: - 1)P; o n i = 2 ,  i -(I - &/lR+)Pi - f/?L+PLf + (is,' + 1)P: on i  = I - 1. 

on 3 5 i I I - 2, 
o n i = l - l ,  

- i  
d =  &/?;Pi + P i  

o n 3  I i I 1 - 2, 

The five unknowns c i -2 ,  c i -  ', cici+ and c i+2  in each finite difference equation can be found 
using a pentadiagonal solver of the form 

a ,  = 0, P1 = 0, Y1 =o ,  
a2 = - D , / C , ,  p z  = 0, Y 2  = + l K 1 3  

= [ - Di  - Pi(Bi + Aiai -  l ) ] / R i ,  ai+ Pi+'  = -Ei/Ri,  

y i +  = [4i - Biyi - A,(ai-,yi + y i -  J ] / R i ,  i = 3 , .  . . , 1 - 1, 

where Ri  = Ci + ai(Aiai- , + Bi) + AiPi-  and the boundary conditions have the form 
Clcl  + D,c2 = 4, and Blcl- + Clcl = 4[. After finding the coefficients a, p and y ,  we can obtain 
the concentrations 

c1 = (4, - ~lYl)/iBlal + c l -  = alcl + y l ,  

ci = ai+lc i+l  + B i + l ~ i + 2  + y i + l ,  i = 1 - 2,. . . , 1. 

It can be shown that this approximation of the advection terms satisfies the mass conservation 
laws: 
I -  1 

1 6<(pc )Ar  = clp: + IcIp; 1 - cc2 + f P i . R ( C 2  - c.311 lp; I + [cl-  1 + fp:- l .R(CI-  I - CI-  ,?)I I p: 1. 
i = 2  

(51) 

The first and second terms on the right-hand side of (51) describe the input of pollutants from 
the left and right boundaries respectively, while the two last terms describe the outgoing fluxes 
from the left and right boundaries respectively. If fi:,R = 0, then the outgoing flux is equal to 
P;c,, while if pi,R = 1, then this flux is equal to (3c2/2 - c 3 / 2 ) P ; .  To obtain equation (51), it 
was necessary to satisfy the following restriction on the weighting function: 

(PR)i = (Pi ) i+  1, ( K ) i  = (PL+)i+ 1' 

Equation (49) satisfies this constraint. 
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In solving equation (46) and (47), we should use the value of P ,  Q and H defined on the 
intermediate time step, so we should solve the combined dynamics and advection-diffusion 
equations with the same time step. Only in this case will the change in pollution volume in a grid 
cell be balanced by the change in cell water volume. 

Testing 

The numerical scheme given above was tested on analytical solutions of several model 
problems. As a first example let us consider the problem of diffusion of contaminant in a circular 
basin. The initial field of contaminant has the form 

On the lateral surface of the basin where r = R the condition of zero contaminant flux is set, 
i.e. dc/dn = 0. The analytical solution is given by 

where J ,  is a Bessel function of zero argument and v, are the positive roots of the equation 
Jb(v) = 0. Numerical integration of the problem was performed firstly on a grid composed of 
23 x 23 points. The parameter E was taken as 3.4539. It  was foundI4 that the concentration 
profiles practically coincide over the whole domain. Only at the boundary is a slight deviation 
due to the approximation of the boundary condition observed. Experiments showed that this 
deviation decreases with grid refinement. For the implicit scheme (46), (47) the influence of the 
time step Ar was tested for an instability parameter pcAf/Aiin ranging from 0.25 to 15. When 
the scheme is absolutely stable, an appreciable increase in Ar leads to a decrease in diffusion 
velocity. 

The horizontal advection was tested using the rotation of a pollutant spot in a circular basin 
with constant angular velocity. Comparison was made with upstream first-order differences and 
several other schemes. We concluded that the hybrid advection scheme does not diffuse the 
pollutant much, while oscillations are eliminated owing to the presence of the first-order scheme 
(Figure 3). 

6. COMPUTATIONAL EXAMPLES 

The model has been applied to various seas, lakes, reservoirs and rivers. In this section we 
provide examples of the use of the numerical methods for modelling the circulation and transport 
in Neva Bay in the Eastern Gulf of Finland and in the Amur river near Khabarovsk city. 

Neva Bay is a shallow sea bay with depths ranging from 3 to 5 m to the west of St. Petersburg 
(Figure 4). The length of the bay is 20 km and its width is 15 km. At present the bay is crossed 
by a dam under construction aimed at protecting the city of St. Petersburg against storm surges. 
The length of the dam is 25 km. There are six water-sluices and two ship openings in the dam 
which are 100-240 m wide. Study of the impact of the dam is a very real problem for the city. 
In our calculations we used a grid generated by the solution of equation (14) and represented 
in Figure 4. The grid steps varied from about 100 m in the ship openings and water sluices of 
the dam up to 2.5 km. Under these conditions, for the local CFL numbers we have Cr x 10 at 
At = 2 min. The discharges of the Neva and its arms are assigned in the open part of the contour 
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Figure 3. Computations of rotation of a pollutant spot in a circular basin. Fields of concentration after one period of 
rotation (50 time steps): a, initial field of concentration; b, first-order upwind scheme, Douglass-Gunn spliting; c, Jentry 
approximation, Peaceman-Rachford splitting; d, second-order upwind differences, Beam-Warming splitting; e, second- 
order central differences, Douglass-Gunn splitting; f, second-order upwind differences, Peaceman-Rachford splitting; 

g, second-order central differences, Peaceman-Rachford splitting; h, hybrid of first- and third-order schemes 
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4 L m  - 
Figure 4. Curvilinear grid generated by Thompson er al.' elliptical method for Neva Bay in eastern Gulf of Finland 
and main treatment plant outfalls: 1, Bolshaia Izora, discharge 3 x 10'' coli-bacteria per second; 2, Lomonosov, 
5 x 10"; 3, Petrodvorets. 5 x 10"; 4, Strelna, 6.5 x 10''; 5. South-west Treatment Plant, 6.45 x 10"; 6, Central 
Treatment Plants, 8.7 x 10"; 7, North treatment Plant, 1.15 x 8, Sestroretsk, 3 x 10''; 9, Roschino, 3.5 x 10"; 

10, Zelenogorsk, 1.5 x 10"; 11, Molodeznoe, 1.4 x 10"; 12, Kotlin, 2.5 x 10" 

N 

of the eastern boundary. The condition i = [ ( t )  is defined at the western boundary behind the 
dam. 

Calculations of non-stationary flows in the bay under small surface level oscillations and varied 
meteorlogical conditions place stringent demands on a model. A rigorous test can be done by 
reproducing the progressive vector diagram of observed flows and the time history of surface 
elevation. Examples of this test are given in Figures 5 and 6. Figure 5 is a reproduction of the 
flow structure at a station in the south zone of the bay. We reproduce here also for comparison 
our previous result obtained with the three-dimensional numerical rn0de1.I~ Figure 6 is a 
reproduction of surface level oscillations on the south coast (Strelna) for no-dam (top) and dam 
(bottom) conditions. The results show that the model adequately represents the hydrodynamical 
regime of the bay. 

Generalized estimations of the dam impact on hydrological conditions in the bay are of 
particular interest. Comparative analysis of the observed and computed spectra of the velocity 
field variability-the linear invariant of the correlation tensor-shows that the velocity vector 
variability under the dam conditions is markedly decreased. The results indicate that the dam 
is a relative barrier for high-frequency flow fluctuations with a period below 5 h, whereas waves 
of semidiurnal period, which predominate in the energy spectra, are essentially not distorted. 
The lateral turbulent eddy coefficient, which is needed in the semi-implicit scheme for smoothing, 
only influences relatively high-frequency oscillations. Computation of the average conditions 
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19* 

Figure 5. Progressive vector diagram of currents at a station in Neva Bay on 22 September 1981 (90 cm from bottom): 
A, observed; B, computed with two-dimensional model (53 x 49 grid points), At = 6 min; C, computed with three- 

dimensional (19 x 11 x 1 1  grid points), At = 2 min 

over a fortnight shows that the dam decreases the western transport by less than 25%, which 
is about 5% of the water discharge of the Neva. Details of the numerical simulation of the Neva 
Bay dynamics are given in Reference 28. 

The degree of pollution in Neva Bay is extremely high and the microbiological levels of 
pollution in the bay are catastrophic. These negative changes have been occurring over dozens 
of years and so it is clear that they are not entirely caused by the dam construction. The main 
reason is the very poor quality of treatment of waste water from St. Petersburg. The second 
reason is the increasing loading of pollutants from Ladoga Lake. Local outfalls of industrial 
waste water are large sources of pollution. It was decided to concentrate all urban and industrial 
wastes at three large treatment plants: the North Treatment Plant (NTP), the south-west one 
(SWTP) and the Central one (CTP). The choice of sites for these outfalls is strongly restricted 
by the presence of numerous resorts along the coast and by Kotlin Island. 

The model was used to predict coliform bacteria concentrations in Neva Bay from water 
discharges of combined urban and industrial outfalls. The locations of the 12 most important 
treatment plant outfalls from St. Petersburg and its suburbs are shown on Figure 4. Their 
prognostic coli-bacteria discharges were determined by multiplying the projected volumes of 
waste water discharges for the years 1995-2000 and the forecasting concentration of coli-bacteria 
after treatment (5 x lo6 1-I). The coefficient of diffusion pc was taken equal to 2 m 2  s - '  
according to measurements. Three different model runs were performed: (a, b) the main outfalls 
located as suggested now for (a) dam conditions and (b) natural conditions; (c) the NTP outfalls 
transferred 1 km offshore (2 km from the shore), the SWTP outfalls transferred 2 km to the north 
from the Sea Strait, dam conditions. The last example corresponds to steady state dynamics 
with zero surface level on the western boundary. 

Figure 7 shows the concentration fields for these three cases when the steady state is reached 
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Figure 6. Variations in surface elevation at Strelna during 12-22 October 1981 (top) and 1 4  December 1986 (bottom): 
solid curves, computations; dashed curves, observed data 

(after 240 h). Figure 7a corresponds to the dam conditions with the NTP and SWTP outfalls 
located near the shores as suggested now. It is seen that in this case the plume from the NTP 
outfalls flows in the shallow near-shore waters of the north coast. The plume from the SWTP 
outfalls comes to the south coastal zone with slow water velocities and also flows near the shore. 
If the dam were to be destroyed as suggested by some public groups, the pollution of coastal 
regions would only change insignificantly (Figure 7b) according to our results on the water 
dynamics. The dam prevents plume movement to Sestroretsk but increases concentrations in the 
inner region adajacent to the dam. On the other hand, the transfer of the NTP outfalls 2 km 
offshore would result in the plume flowing through the second sluice from the north coast and 
the north coast would be washed by prognostically purer Neva water (Figure 7c). The transfer 
of the SWTP outfalls 2 km to the north of the Sea Strait dykes would result in the plume 
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Figure 7. Field of pollutant concentrations in Neva Bay at steady state: a, b, main outfalls located as suggested now, 
a d a m  conditions, &natural conditions; c, main outfalls transferred farther offshore, dam conditions 
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flowing along the deep Sea Strait together with the plume from the CTP outfalls to the south 
of Kotlin Island. A large zone of poor water quality is located near the stagnant zone to the 
north-east of the Sea Strait dykes owing to the CTP outfalls. The Petrodvoretz, Lomonosov, 
Strelna and Bolshaia Izora treatment plant outfalls are situated in a very shallow water area 
with slow water velocities. Thus these outfalls, despite their low discharging capacities, will cause 
high coli-bacteria concentrations in this region. 

The results obtained for the case or unsteady dynamics2* confirm these conclusions. A review 
of the temporal variability of the total amount of pollutants in Neva Bay showed that it decreases 
at times of low surface level in the Gulf of Finland. The computations have shown that the 
future pollution of the Neva Bay coasts is strongly dependent on the location of the main 
treatment plant outfalls, but destruction of the dam would not greatly improve the ecological 
situation in the region. 

The next example of a model application is the computation of currents in the Amur river 
near Khabarovsk city (Figure 8). In recent years human activity and natural river development 
have led to considerable changes in the river bed in this region. As a result, many hydrotechnical 
structures now work under adverse conditions. In addition, an exploration of the sand in the 
main river bed is planned. Computations were performed to estimate the influence of sand-bar 
development on the hydraulic regime. 

The time step was equal to 10 s and the grid consisted of 31 x 107 points. The length of 
domain was equal to 18 km. A discharge of 19,000 m3 s- in the upper open part of the river 
boundary was assigned. The condition of ‘free exit’ was assigned in its lower part. Firstly, the 
model was run with natural morphometry and bathymetry. The Mannings number n was chosen 
equal to 0032 according to natural data. The computation showed that a reasonable value of 

Figure 8. Computed flow in Amur river near Khabarovsk city and proposed location of a sand-bar (dashed curve) 
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the wall friction coefficient I, lies in the range 0.2-0.7. After that, many model runs were done 
with various proposals of morphometry and bathymetry. The most effective one was determined. 
It was shown that if a sand-bar were situated just opposite the source of the Beshenaya ('Wild') 
arm, then the water discharge through the main river arm would be the largest and the discharge 
through the Beshenaya arm would be relatively small. In this case the work of hydrotechnical 
structures situated on the shores of the main river arm would be improved. The small discharge 
through the Beshenaya arm would be beneficial, also because the load of sediment materials 
from its mouth would be diminished. 

The results demonstrate the possibilities of the curvilinear co-ordinate method to satisfy the 
increasingly stringent requirements for modelling coastal zone and inland hydrodynamic and 
hydroecological processes. 
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APPENDIX: GENERAL DESCRIPTION OF MODELLING SYSTEM DESIGN 

Based on the methods described above, a software package for the modelling of flows, surface 
elevations and transport of pollutants in an arbitrary domain has been developed. It is named 
Cardinal (Coastal ARea Dynamics INvestigation ALgorithm). Cardinal is developed especially 
for application on personal computers. The package is written in Pascal. Its volume is about 
850 kbytes, but only 10% of its code performs computations. The remainder of the package 
comprises various subroutines aimed at implementing a user-friendly interface and allowing one 
to display the computational results in different ways. Cardinal is divided into 16 separate panels, 
each solving a particular problem. We give below a brief description of this package. 

The first panel (Name) carries out the usual file operations (save, load data files). Various types 
of data such as depths, grid co-ordinates, river information, etc. are saved in different files. Thus 
it is possible to compose a desired configuration of data files. 

The next panel (Area) is intended for the generation of domain boundaries by introducing 
their points with a cursor, mouse or digitizer. The contours may be of two types: closed (main 
outer contour, islands, semi-islands) or unclosed (e.g. dams). For standard geometrical elements 
(straight line, circle, rectangle) contour generation is done in a simplified way. Any contour can 
be eliminated, transferred, rotated or changed in size. The programme can perform image 
magnification on the screen. It is possible to display the entire computational domain or a small 
fragment of it. The final size of array of contour points is not known a priori and it is not 
possible to declare it in the computer code. To solve this problem, we declare each point in 
Pascal as a record consisting of its corresponding (x, y)-co-ordinates and the computer addresses 
of two records of neighbouring points. When introducing a point or deleting it, a procedure of 
changing the addresses of neighbouring points is implemented. A similar arrangement is made 
for the sequence of contours: each contour corresponds to a record variable consisting of the 
address of the first contour point, the addresses of two neighbouring contours and some other 
information. 
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After the domain boundary has been constructed, it is possible to enter the Grid panel to 
generate the curvilinear grid. Prior to grid generation the programme makes several tests of the 
contours. Once an error is revealed (intersection of lines, too small a number of grid points in 
the outer contour to set internal ones, incorrect topology, etc.), the programme reports the error 
and returns to the Area panel. If there are no errors, the programme starts the grid generation. 
This is an iterative process which may be interrupted when it is seen that the grid has been 
generated or it is necessary to return to the Area panel to correct the position of some points. 
For multiply connected domains the grid generation is performed in two steps. In the first step 
the grid is generated without taking into account the internal contours. Then the programme 
ties the first angular point of each internal closed contour to the nearest grid point. For the 
unclosed contours it is necessary to tie two (e.g. first and last) points of each contour. These tied 
points can be changed by the user. In the second step the grid is generated with cut-outs for 
the internal contours. 

The next step is the input of the depth field. The depths can be introduced directly at the 
curvilinear grid points, but often it is more convenient to introduce them first at the points of 
a rectangular grid and then interpolate to the points of the curvilinear grid. A rectangular grid 
with arbitrary space steps is then constructed first. This grid may be rotated. If the depth data 
for the given basin are available from some text file, Cardinal can read this file irrespective of 
the format in which these data are presented. Finally, if the depth field is expressed analytically, 
then Cardinal can read the equation and after internal translation introduce the depths 
accordingly to it. 

As described in Section 3, three types of open boundaries may be suggested and the next three 
panels deal with these open bounary types. The Rivers panel is intended for introducing all data 
about rivers, i.e. sections of open boundary with given discharges. For each river the discharges 
can be assigned either in the form of a data row or in the form of an analytical equation. The 
pollution concentrations in each river can also be specified. The Lecels panel is intended to 
introduce the sections of open boundary with given values of surface level variations. The time 
histories of surface level may be specified separately for two opposite shores and may also be 
given using an analytical expression. In the Free exit panel a user may assign the sections of 
open boundary through which long waves can leave the computational domain. 

A separate panel (Puranteters) is used for empirical coefficients: lateral turbulent eddy 
coefficient p,, lateral turbulent diffusivity pLE,  non-conservativity A and geographical latitude. The 
computational regime is also chosen here: only dynamics, or only transport pollutants with 
given dynamics or both. 

In the Wind panel the wind is assigned in the form of time series of wind velocities and 
directions with a given time step or in the form of an arbitrary analytical dependence. In the 
latter case the wind can also be space-dependent. The analytical formula for wind stress 
coefficients k ,  may be assigned here. 

The next panel (Sources) assigns the internal pollution sources. The process includes the choice 
of their locations, discharges and concentrations. 

In the Bottom type panel different values for the bottom friction coefficient p may be assigned 
by dividing the computational domain into a number of regions with constant values of it. 

Before starting the computations, it is possible to define the grid points at which the time 
histories of velocity vectors, surface level oscillations and concentration variations will be 
recorded. I t  is also possible to outline the area in which the time history of pollution volume 
will be recorded. This is performed in the Mareoyraphs panel. 

At last, after the domain contour and the curvilinear grid have been generated and the depth 
field, the open boundaries, all the empirical coefficients and the wind have been specified, the 
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computation may be started in the next (Computational) panel. In this panel the time step, the 
number of steps, the type of picture to be displayed during the computations and some other 
parameters are defined. The types of graphics available are vector fields of velocity and stream, 
hatching pictures of surface level and concentration fields, three-dimensional representations of 
these last fields and graphics of time histories of variables at given points. Cardinal implies a 
reasonable choice of time step to ensure that the CFL number is of the order of unity. However, 
a larger time step can be assigned, since Cardinal uses a semi-implicit scheme in the dynamic 
computation and the implicit scheme for the advection-diffusion equation. The initial surface 
level, velocity and concentration fields can be defined analytically. These fields can also be loaded 
from a file. 

The next (Write results) panel ensures the recording of all the results in the text file in the 
form of digital information. Finally the Quit panel stops Cardinal. 

The large percentage of auxiliary procedures in comparison with the computational block is, 
besides various graphical procedures, due to the requirement to foresee various types of errors 
that might occur during the construction of the computational domain. For example, when 
creating the area of computation, it is possible to draw an island outside the area or insert one 
island into another. Such a situation hardly ever occurs, but an integrated modelling system 
should be ready to react to arbitrary user actions. To find such an error, the programme 
calculates the sum of the angles below which all the points of the closed contour are seen from 
an arbitrary point of the other contour. If the point is situated inside the other contour, the 
sum of the angles will be equal to 2n, while it will be equal to zero if the point is located outside 
the contour. After arrangement of the contour sections corresponding to the openings along the 
boundary, the domain may be expanded in the Area panel. As a result, openings may be found 
inside the domain. A similar situation may occur for the pollution sources: instead of being 
inside the domain they may occur outside it. Most errors are interlocked: for example, it is not 
possible to input a negative depth or to introduce two contour points with the same co-ordinates. 
The presence of other errors such as those mentioned above can only be detected after they 
have been introduced in the model. 

Cardinal can translate analytical formulae in text form and use them in the computation. 
If a syntactical error occurs in a formula (e.g. unmatched brackets, an unknown function 
or argument), then Cardinal shows the position of the wrong character($. Besides all the 
elementary functions, cylindrical and spherical Bessel functions have been introduced in 
the programme. Bessel functions are encountered when solving various hydrodynamical pro- 
blems in circular basins for example. The method of continued fractions, which is extremely 
accurate, is used to calculate these functions. Very often an analytical dependence contains 
a conditional operator. Such a situation arises, for example, when the initial surface level 
perturbation needs to be assigned in some subdomain of the computational area. Expres- 
sions of this type can be introduced via the &function, which is equal to zero for negative 
arguments and unity for positive arguments. Using products of the &functions, any 
conditional operators can be reproduced. The model is constantly being updated and the 
incorporation of additional computational possibilities is becoming more convenient and 
simpler. 
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